Numerical Solution of Space-time Fractional two-dimensional Telegraph Equation by Shifted Legendre Operational Matrices

author

Abstract:

Fractional differential equations (FDEs) have attracted in the recent years a considerable interest due to their frequent appearance in various fields and their more accurate models of systems under consideration provided by fractional derivatives. For example, fractional derivatives have been used successfully to model frequency dependent damping behavior of many viscoelastic materials. They are also used in modeling of many chemical processed, mathematical biology and many other problems in engineering. The history and a comprehensive treatment of FDEs are provided by Podlubny and a review of some applications of FDEs are given by Mainardi. ./files/site1/files/41/4Extended_Abstract(1).pdf

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Analytical solution for a generalized space-time fractional telegraph equation

In this paper, we consider a nonhomogeneous space-time fractional telegraph equation defined in a bounded space domain, which is obtained from the standard telegraph equation by replacing the firstor second-order time derivative by the Caputo fractional derivative Dt , α > 0; and the Laplacian operator by the fractional Laplacian (−∆) , β ∈ (0, 2]. We discuss and derive the analytical solutions...

full text

Application of Legendre operational matrix to solution of two dimensional nonlinear Volterra integro-differential equation

In this article, we apply the operational matrix to find the numerical solution of two- dimensional nonlinear Volterra integro-differential equation (2DNVIDE). Form this prospect, two-dimensional shifted Legendre functions (2DSLFs) has been presented for integration, product as well as differentiation. This method converts 2DNVIDE to an algebraic system of equations, so the numerical solution o...

full text

Numerical Solution of Fractional Telegraph Equation via the Tau Method

This paper presents a computational technique based on the Tau method and Legendre polynomials for the solution of a class of time-fractional telegraph equations. An appropriate representation of the solution via the Legendre operational matrix of fractional derivative is used to reduces its numerical treatment to the solution of a set of linear algebraic equations. The fractional derivatives a...

full text

Solution of Space-time Fractional Telegraph Equation by Adomian Decomposition Method

In the present paper we obtain closed form solutions of spacetime fractional telegraph equations using Adomian decomposition method. The space and time fractional derivatives are considered as Caputo fractional derivative and the solutions are obtained in terms of Mittag-Leffler functions.

full text

A numerical scheme for space-time fractional advection-dispersion equation

In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 1

pages  45- 62

publication date 2018-08

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023